振動周波数の計測 と 振動周波数成分の比較・解析

今回の実証実験の主旨

そもそも「振動」とは『波(波動)』である。物質のある点での振動がそれに隣接する部分の運動を引き起こし、その運動エネルギーが次々に伝えられてゆく現象である。振動現象は、振動波形と周波数によって数値化される。

実際に当たりを感じた瞬間の振動を検証出来ないのなら、出来るだけ同じ条件下で他社製品とアクションロッドの振動波形を計測し、そのデータを比較・解析する事でアクションロッドの特性を数値レベルで検証する事ができます。さらに、この特性を数値化する事は、従来良く使われていたあいまいな性能表現では無く、より明確な性能分析や表現をする事が可能にもなると考えます。例えば、性能(振動伝達率)130%増加や、周波数ピーク○○KHZなど数値の基本を作り出す事も可能となります。このように性能を数値化する事で基準となるデータを作る事ができ、今後よりハイレベルな高性能ロッドを追求する事が可能となります。

振動特性の対比に関する報告

 

■設定条件

他社製品とアクションロッドの振動特性を対比・実証するにあたり、同一環境での正確な振動周波数を把握する事が不可欠である。正確な数値を検証する為、同じAブランクシャフトを使用。 わずかな振動をキャッチ出来る高感度センサーを使用する為、2本のロッド同時に同じ振動を与えると互いに干渉してしまい、互いの干渉を防ぐ為、双方別々のバイスを机に固定し、バイスによって支えられる凹木型にグリップエンドのみを固定し、ロッドを宙に浮かした状態で、それぞれ別々に計測。
1: Aブランク+当社グリップ製搭載ロッド
2: Aブランク+他社グリップ製搭載ロッド

■計測方法

 ラインの先におもりを付け、竿先を弾き振動を与え、FFTアナライザーに接続されたチャンネル1加速度センサー(以下、ch1センサー)をグリップヘッドに、チャンネル2加速度センサー(以下、ch2センサー)をグリップ握り部に固定し、データを計測。 1回の入力では入力数値に微妙な誤差が生じる為、同レベルの入力を10回行い、その平均値を取る事によりデータとしての均一性を出す事とする。 それぞれ平均化されたデータ値を元に、解析を行なう

■計測方法

 ラインの先におもりを付け、竿先を弾き振動を与え、FFTアナライザーに接続されたチャンネル1加速度センサー(以下、ch1センサー)をグリップヘッドに、チャンネル2加速度センサー(以下、ch2センサー)をグリップ握り部に固定し、データを計測。 1回の入力では入力数値に微妙な誤差が生じる為、同レベルの入力を10回行い、その平均値を取る事によりデータとしての均一性を出す事とする。 それぞれ平均化されたデータ値を元に、解析を行なう

■実験内容


振動波形の計測とその周波数成分の比較・解析を行う。
1. 『振動波形データ計測と比較・解析』
   
受けた振動そのものの波形を計測し、比較・解析を行う。
   1) CH1とCH2で計測した振動周波数のグラフがどのように
     変化(伝達)しているか、それぞれ検証する。
   2) CH1とCH2で計測した振動周波数のグラフを重ねて見る事で
     それぞれの振動伝達特性を比較する。

2. 『周波数スペクトル分析による比較・解析』
   振動波形に含まれる周波数成分の比較・解析を行う。
   1) CH1とCH2で計測した振動の周波数スペクトルからそれぞれの周波数特性を検証する。
   2) 振動伝達比グラフで、振動伝達比の比較・解析を行う。

以上、2つの項目をそれぞれのグラフで検証する。